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Note 

n the Stability of Rusanov’s Third- 

The problem of the construction of a third order accurate finite difference scheme 
for a quasilinear hyperbolic system of partial differential equation was treated by 
Rusanov [3]. In the case of the one space dimension the Von-Neuman stability 
analysis was carried out and the scheme was shown to be stable. However, for the 
two dimensional case the stability of the scheme is not clear. It is easily shown 
that without a proper stabiliser the scheme is unconditionally unstable; 
the form of the stabiliser has not been determined. 

In this note, we would like to discuss the stability analysis of the li~ea~~~ed 
scheme in several space dimensions. We shall show that for the case of a 
hyperbolic system the scheme can be made stable. The form of the stabi~ise~ an 
a sufficient condition for strong stability is also given. It turns out that the stabiliser 
is independent of the eigenvalues of the system and is very small, so that electively 
the scheme is of fourth order accuracy in space. 

However, for the nonsymmetric case, an example is given to show that the 
scheme is unconditionally unstable and there is no way to stabilize the scheme. 

The extension of these results to the three di~~e~sional case is presented in the 
last section. 

I. THE SYMMETRIC CASE 

Consider the following set of equations 

au/at = A(u) au/ax + B(u) aupy = [2F(u>j2x] t [aG(u)/ay] o’i 

where A(u), B(u) are matrices, and u is a vector. ket us introduce in (x, y, t)-space 
the rectangular mesh with steps dx = dy and let A = Ak/Llx, +(xi , yj , t,J = 4: . 
Next we define the difference operators 
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Rusanov’s third order scheme can be written as 

Because of the symmetry in the space difference operators the scheme is of fourth 
order accuracy in space if y3,, = 0 but only third order in time. However in this , 
case it is clearly unconditionally unstable, as it can be seen from Eq. (6) putting 
r,~ = 1 and deriving that in this case R = I + iT (where T possesses real eigen- 
values). It appears y3,, is essential for stability. 

In order to get the amplification matrix we define the following: 

f = sin 3. 
2 

7 = sin $ (4) 

where ol and p are the dual variables in the Fourier space. Next we define the 
matrix A4 

A4 = A&l - 7j2)1/2 + &(I - P)1/2. (5) 

Note that M, in the linear case, is the Fourier transform of &(S~@’ + &,p.,G) which 
is a difference approximation to &.#t. 

Using these notations we arrive at the following form of the amplification 
matrix R 

R = I + 16y,([4 + 7”) + 2i(l - f2)lj2 (1 - q2)l12 AM - 2(1 - c2)(1 - q2) AzAP 
+ 2i[hA7j2&1 - E2)l12][I + i(1 - t2)l12 (1 - 7j2)1/2 AM - ?t;XzJJ2] 
+ 2i[hBf27(1 - 7jz)1’2][1 + i(1 - f2)l12 (1 - 7j2)rj2 M - iX2M2] 
+ *i[hA[3(1 - f2)l12 + XB7j3(1 - q2)l12. (6) 

Our aim is to find conditions on the eigenvalues of A and B such that 

II R” II G K (7) 

In this stage we assume that A and B and therefore M are symmetric. This does 
not imply that R is a normal matrix since A and B are not commutative, and 
therefore the Von Neuman condition is not sufficient. Moreover there is no way 
to express the eigenvalues of R in terms of those of A and B. We therefore adopt a 
different approach which was successful in analysing the stability of different 
schemes [ 11. 



ON THE STABILITY OF RUSANOV’S THIRD ORDER SCHEME 423 

We start by introducing the following matrices 

I?, = i [*(I - [“) + 4 iAt3(1 - &z)1Ja 

JR, = ; q”(l - 712) + 4 i&3(1 - $)1/2 

x4 = (q=o ; ‘?I. t- 2A7j2&1 - py2)(1+ 

R1 s= i 
; T?“) + 3prl(l - 712)1:z)(~ 4 

The following theorem is easily verified. 

We shall try now the estimate the norms of the &‘s. 

THEOREM 2. Let p(A), and p(B) be the largest eigenvalues, irz absolute value, of 
A and B respectively. Then, if 

Ap(A), $(B) < 1/4-d% 
then 

(a) jj R, /j < (1 - t2)lj2 (1 - q2)li2 I (1 - t2)(1 - 7”) 
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The proofs of the inequalities (a), (b) and (c) are based on the fact that RI , R, , R3 
are normal since A, B and M are symmetric, therefore we have to observe only the 
eigenvalues of R, , R, and R, . Moreover since RI , R, , R, are each a polynomial 
in one matrix we can apply the spectral mapping theorem. The rest is a lengthy but 
straightforward algebra provided that one uses the inequality 

f(M2) = p’(M) < 11 Mii2 d max[p2(A) + p2(B)1[f2(1 - y2) + ~~(1 - [“)I. (12) 

For proving (d) we observe that R, is a product of two normal matrices. The 
second one is less than one in norm and the first one satisfies (d). The same argu- 
ment holds for (e). This completes the proof. 

Since 

II R II < C II & II e 1 (13) 

under the condition h&4), Xp(B) < l/44/2, we have proved that the scheme is 
strongly stable under condition (10). It should be noted that this is only a sufficient 
condition. Computer run on model problems indicate that the actual stability 
limit is 

Since ySO is very small the scheme is effectively a fourth order scheme in space. The 
factor of 4 is due to the fact that our analysis yields strong stability )I RI/ < 1 
rather than /I R” j/ < K 

II. THE NONSYMMETRIC CASE 

The previous analysis uses the assumption that A, B, and M are symmetric. In 
case of nonsymmetric matrices the scheme might be unconditionally unstable. 

Consider for example the case 

A = [; ;] B = [:, ;] 

and let 6 = -7. Then the amplification matrix G given in (6) is a function of A - B 
and < only. But (A - B)” = 0 for n > 1. Therefore we get the expression 

1 + 32~~~54 R= lo 2iX([(l - &l/2 + @(l - [")'/2) 
1 + 32~~~54 I- (14) 
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The Buchanan criterion ([3] p. 81) states that 
exists a constant k, such that 

j X&l + +$“)(l - .$2)1/2 j < kz[l - j E -t 32y,&? 1% (97) 
and 

I 1 + 32y,,&4 I < 1. (W 

Equation (18) implies that yzO . < 0. Therefore for small E Eq. (17) is 

h I t I(1 + %‘“)(l - t2P2 < 32k, I yao / 5” WI 

which is not satisfied for small f. This indicates the fact that the scheme is un- 
conditional unstable. 

III. THE THREE DIMENSIOKAI. CASE 

It was observed in [I] that Rusanov’s scheme is constructe 

u(3) = u + gp(t + jnt> i gitu,(l), 

where zP is a second order approximation to U. 
Using this observation the third order three dimensional scheme is 

For the symmetric case the same proof holds and the results are 

Again, numerical examples indicate the fact that the factor 4 can be remove 
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